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Abstract--The Western Wind and Solar Integration Study 

(WWSIS) is one of the world’s largest regional integration 
studies to date.  This paper discusses the creation of the wind 
dataset that will be the basis for assessing the operating 
impacts and mitigation options due to the variability and 
uncertainty of wind power on the utility grids.  The dataset is 
based on output from a mesoscale numerical weather 
prediction (NWP) model, covering over 4 million square 
kilometers with a spatial resolution of approximately two-
kilometers over a period of three years with a temporal 
resolution of 10 minutes.  The mesoscale model dataset 
includes all the meteorological variables necessary to calculate 
wind energy production. Individual time series were produced 
for over 30 thousand locations representing more than 900 GW 
of potential wind energy generation. 
 

Index Terms— data processing, meteorology, power system 
meteorological factors, power system modelling, power system 
planning, weather forecasting, wind energy 

I.  INTRODUCTION 
EATHER-DRIVEN renewable energy sources 
require a new paradigm in power systems analysis. 

Conventional fossil fuel power plants can be operated in 
accordance with the needs of the power system. Renewable 
energy sources such as wind or solar are variable and thus 
the operating schedules of such plants are largely dictated 
by the changing “fuel” supply. This is especially pertinent in 
the case of wind, photovoltaic solar and run-of-the-river 
hydro, none of which have inherent storage in their power 
plant design. This variability may result in increased costs, 
largely manifested through an increase in the ancillary 
services and/or regulation reserve required to maintain 
power system reliability. Integration studies assess these 
operating impacts and their associated costs and require a 
solid understanding of the varying fuel supply.  

Various methodologies exist for conducting grid 
integration studies for wind power and these are getting 
significant attention. However, the importance of the fuel 
supply data that are used in these studies is often 
overlooked. The Utility Wind Interest Group released a 
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report in 2006 [1] on the state-of-the-art in wind integration 
that identified many key considerations in trying to integrate 
wind into a power system. However, the report did not 
mention the need for greater accuracy in the simulation of 
synthetic power output. The International Energy Agency 
(IEA) released a report on the research and development 
needs for wind energy [2] that identified the need for the 
creation of a wind characteristics database, but this database 
primarily focuses on wear and tear on wind turbines rather 
than their characteristic power generation [3]. Follow-up 
work by the IEA with the Organisation for Economic Co-
operation and Development (OECD) [4] recognised the 
need for wind energy forecasting, but still overlooked the 
need for accurate modeling of synthetic wind energy. The 
European Wind Integration Study [5] used observed data as 
the basis for its prospective build-out scenarios.  This may 
be reasonable for limited scope scenarios that primarily 
assess the expansion of existing wind projects, but is not 
sufficient to accurately assess the effects of geographical 
diversity when new wind projects are studied. 

As integration studies become more sophisticated, the 
importance of modeling the supply is increasingly 
recognized [6]. Ideally, an integration study would be based 
on observed power output data for each project, yet since 
these studies are used for planning purposes, they must rely 
on model output for projects that are not yet built [7]. In 
fact, even long-term, on-site meteorological data (as 
opposed to power data) are rarely available. Therefore, a 
different technique must be used to synthesise the behaviour 
of renewable energy projects to be considered in the 
integration study. IEEE Transactions on Power Systems had 
a Special Section on Wind Energy in 2007 including the 
paper “Utility Wind Integration and Operating Impact State 
of the Art” [7] which stated: 

“A state-of-the-art wind-integration study typically 
devotes a significant effort to obtaining wind data 
that are derived from large-scale meteorological 
modeling that can re-create the weather 
corresponding to the year(s) of load data used.” 

The use of meteorological models and related post-
processing in support of wind integration studies is the topic 
of the current paper, which uses the Western Wind and 
Solar Integration Study (WWSIS) as a case study. The 
fundamental goal of the WWSIS, which was funded by the 
Department of Energy (DOE) and coordinated by the 
National Renewable Energy Laboratory (NREL), was to 
produce a comprehensive dataset that could be used to 
model the build-out of potential wind plants in the western 
United States. This study is on of the largest wind 
integration studies to-date, covering an area of more than 4 
million square kilometers modeled at a two-kilometer 
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resolution, resulting in over 1.2 million grid points. From 
this base dataset, over 30,000 points were selected for 
further evaluation.  Each of these points was modeled as an 
individual project with ten VestasV-90 (3MW) turbines. The 
cumulative amount of wind energy modeled for the entire 
study is over 900 GW. This dataset will be made public via 
a web-interface hosted by NREL and designed by 3TIER. 

II.  METHODS FOR WIND DATA CREATION 
The lack of high quality wind resource data that are 

synchronized with the region’s electric load is one of the 
primary obstacles to conducting wind integration studies. 
Time series data must be used to perform power system 
analysis for systems with significant wind penetration [8]. 
These data can be obtained in one of three ways: 1) on-site 
observations; 2) data mining of either offsite observations or 
reanalysis data; and 3) mesoscale modeling [6]. 

 On-site observations of power generation are the most 
desirable data source because they represent what actually 
happened (within the accuracy of the instrumentation/data 
storage). However, power output observations can only be 
obtained from existing wind projects – meaning that the 
integration studies would have limited application.  
Alternatively, wind speed observations could be used, but 
these are not quite as accurate as observations of power 
output, because the conversion of wind speed to power 
output is not entirely deterministic, even at the turbine level.  
Furthermore, a wind speed measurement at a single point 
does not adequately represent the average wind speed across 
the entire project. The project average wind speed and 
power output tend to be smoother than the same quantities at 
a single location or turbine [7]. Multiple hub-height 
anemometers during the entire period of interest are required 
to obtain good information for a single site and although this 
information exists for some locations, it is not available for 
most sites.  Thus, the use of on-site observations is of 
limited use for integration studies. 

Data mining/data manipulation is another method of 
obtaining data for an integration study. Measure, correlate, 
predict (MCP) is the most prevalent data mining method 
used to produce synthetic wind or wind power time series 
data. MCP takes a short-term record of on-site 
measurements and correlates it to a long-term record of 
measurements at an off-site observation station. This 
technique has some serious flaws that render it inappropriate 
for most integration studies. First of all, it still requires 
(short-term) on-site observations to establish the correlation 
to the off-site data. This prevents an analysis of sites for 
which on-site data are not readily available. A second major 
limitation is that a nearby off-site observation tower with a 
sufficiently long measurement period must exist. Although a 
sufficient number of long-term observation stations exist in 
some areas, this is generally not the case in sparsely 
populated regions, or in most developing countries. A third 
limitation is that off-site observations generally have a 
temporal resolution of one hour, but that higher temporal 
resolution data are desirable for most integration studies. In 
addition, the accuracy of MCP can be problematic if the on- 
and off-site locations do not have similar meteorological 
characteristics. Most long-term weather observation towers 
are located in places such as airports and airports are 

intentionally built in low wind speed locations. The local 
weather phenomena can be markedly different for sites that 
are relatively close, especially if one site is specifically 
chosen for low wind speeds and the other site is chosen for 
high wind speeds. Complex terrain further amplifies this 
source of error. However, even if all of the data are 
available and the MCP technique is appropriate for the site 
of interest, it still suffers from the limitation that MCP 
cannot be used to produce a gridded dataset. It may be able 
to produce a synthetic time series for a single location, but 
time series at multiple locations are needed to model the 
effect of smoothing across a large wind project [9]. 

Data mining of reanalysis data [10] (spatially and 
temporally coarse global datasets) avoids the need for 
nearby, long-term, off-site observations, but does not 
provide sufficient temporal resolution and still suffers from 
many of the same flaws as MCP – such as unreliable 
correlations and the lack of ability to model multiple points 
per farm (with non-trivial smoothing effects). 

Numerical weather prediction (NWP) models are a good 
alternative to data mining or on-site observations. The NWP 
simulations are driven by conservation equations that model 
the physical interactions in the atmosphere. The NWP 
models employ the reanalysis wind speed datasets 
(mentioned previously) to determine boundary conditions 
for the model run, which is then realistically downscaled 
(using physical equations) to a finer physical resolution. 
With sufficient computing power, these models can be used 
to calculate wind speeds at evenly spaced grid points over a 
very wide area and can also produce simulations at several 
heights above the surface. In addition, since the models are 
reproducing the physical interactions in the atmosphere, 
there are no inherent temporal limitations. Wind speed 
datasets with a temporal resolution of ten minutes can be 
obtained with the boundary conditions provided by a long-
term reanalysis dataset with a temporal resolution of six 
hours. 

The NWP model that downscales the reanalysis data is 
termed a mesoscale model. Because the mesoscale models 
run over a smaller area than the larger synoptic scale 
models, which are often employed by the weather bureaus, 
the physics of the model can include additional detail. For 
instance, the larger models assume hydrostatic conditions 
ignore the effects of local topography and land use. In 
contrast, mesoscale models can be non-hydrostatic and can 
simulate smaller scale wind patterns such as thermally 
driven local winds and the Venturi effect (mountain winds). 
In fact, the output from mesoscale models can be dominated 
by terrain and non-hydrostatic phenomena. These winds 
may not be accurately modeled through data mining from 
off-site observations or data mining based on reanalysis data 
alone.  

Once the weather data have been downscaled to a finer 
temporal and spatial grid, the key parameters (such as wind 
speed) can be compared with shorter-term observations, 
possibly at multiple locations. Model output and 
observations often differ due to the necessary 
simplifications that the model makes in representing the 
complexity of the atmosphere. These errors can be reduced 
with Model Output Statistics (MOS) equations. The MOS 
equations are used to make statistical adjustments to a 
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modeled dataset. These corrections are possible because the 
gridded data cover an area in a continuous manner and 
observation data at one site will have a sphere of influence 
that can be used to adjust the model outputs. 

However, the NWP methodology is still a model and has 
two drawbacks. Firstly, the NWP mesoscale models do not 
accurately represent all weather patterns and some regions 
can have significant errors, which cannot always be 
corrected with MOS equations. However, experience shows 
that these locations are the exception rather than the rule. 
The second drawback with mesoscale modeling is the large 
computational requirement. Large area NWP simulations 
with a sufficiently high spatial and temporal resolution 
require large supercomputing facilities and even then are 
slow to operate. Nevertheless, the flexibility and accuracy of 
mesoscale modeling justifies the use of the methods and 
computing resources for integration studies. Even more so 
since the alternatives cannot provide the gridded data 
required for a large wind integration study.  

III.  WWSIS DATASET GENERATION 
The Western Wind dataset was created in two separate 

stages, but the modeling technique was consistent to allow 
for a smooth combination of the datasets. The first stage 
modeled the Pacific Northwest and was performed for the 
Northwest Wind Integration Action Plan (NWIAP) [11], 
jointly sponsored by the Bonneville Power Administration 
(BPA) and NREL. It covered the states of Washington, 
Oregon and Idaho as well as most of Montana and 
Wyoming. Fig. 1 shows the area covered by the NWIAP 
modeling effort bounded by a striped box. The second stage 
expanded the modeling area to include most of the western 
United States west of 100ºW longitude. 

 

 
Fig. 1.  A map showing the modeling domains in the WWSIS. The striped 
bounding box shows the NWIAP region and the other domains, black, grey 
and white, are called Domains 1, 2 and 3 respectively. 

A.  Model Domains 
Fig. 1 shows four domains: the NWIAP domain, and 

three other domains. The use of multiple domains was 
forced by the magnitude of the area that was modeled at a 
high resolution.  

The model runs are often too large (especially in this 
case) to run in the memory of a single processor, The 
simulation is parallelized by allocating sub-sections of each 
of the model domains (sub-domains) to individual computer 
processors on a supercomputing cluster. However, the 
processors that simulate each of the sub-domains cannot do 

the calculations entirely independently. Each processor must 
communicate with the other processors for adjacent sub-
domains. This is required to allow “advection” and 
“diffusion” operators to transfer information about weather 
events between neighboring sub-domains.  

Sub-domains allow these models to run accurately and 
relatively quickly, but in practice the number of sub-
domains that can be accommodated is still limited. The size 
of each sub-domain is memory-limited and the number of 
sub-domains is limited by the bandwidth of the inter-node 
links on the compute cluster. If too many sub-domains are 
used, the communication channels in the cluster become 
clogged, resulting in increased latency. The southern region 
identified in Fig. 1 had to be split into two domains to 
prevent potential latency problems with the compute cluster. 

B.  Model Configuration 
The Weather Research and Forecasting (WRF) model 

[12] is generally considered to be the most advanced 
mesoscale model in North America and has superseded the 
previous industry standard, the MM5 model [13]. Thus, the 
WRF model was used to perform the mesoscale modeling 
for this project. The WRF model can be configured to better 
represent the physical processes based on model domain, 
resolution and application. Four different model 
configurations were tested for the WWSIS model 
simulation, the configurations are shown in Table I. 

 

TABLE I 
NWP CONFIGURATIONS USING THE ADVANCED RESEARCH WRF CORE 
 Vertical 

Levels 
Planetary Boundary 
Layer 
Parameterisation 

Elevation 
Dataset 

Land 
Surface 

A 31 Yonsei University 30 arc-second 
USGS 

5-layer soil 
diffusivity 

B 31 Mellor-Yamada-
Janjic 

30 arc-second 
USGS 

5-layer soil 
diffusivity 

C 31 Yonsei University 30 arc-second 
USGS 

Oregon 
State Uni. 

D 37 Yonsei University 30 arc-second 
USGS 

5-layer soil 
diffusivity 

 

Configuration A was used as the baseline model 
configuration with configurations B, C and D all having a 
single parameter of deviation. Configuration B used the 
Mellor-Yamada-Janjic boundary layer parameterisation, 
which features explicit prognostic equations for boundary 
layer turbulence. Configuration C used the Oregon State 
University land surface model, a more sophisticated 
physical process model for estimating surface fluxes. Both 
Configurations B and C should theoretically be better than 
Configuration A. However, the increased sophistication in 
the models introduces additional assumptions and 
unconstrained parameters that can adversely affect the 
accuracy of the model. Configuration D adds extra vertical 
levels in the boundary layer to better simulate the vertical 
profiles of wind and temperature near the surface. 

The trial runs that evaluated the various configurations 
were simplified, because of the computational cost of the 
simulations. The trials were run at a coarser spatial 
resolution of 6 km × 6 km grid spacing instead of 
2 km × 2 km and the model was only run for three out of 
every nine days for the year 2006.   

The four different model configurations were run for 
each of the domains. The NWIAP domain was modeled first 
and validated against six tall towers. The validation showed 
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that the default configuration, A, was optimal. The other 
three domains were validated against a total of 30 tall 
towers. Each of the different configurations was judged 
qualitatively “best” (over a number of parameters) for at 
least one tower.  For Domains 2 and 3 Configuration D 
outperformed the other configurations most consistently. 
For Domain 1 Configurations A and D performed at a 
similar level of accuracy. The study team decided to use 
Configuration D for Domains 1, 2 and 3 to assure 
consistency. 

C.  Dataset Creation 
The selected models were run on the supercomputing 

cluster. For each model grid point, defined by latitude, 
longitude and elevation, the following twenty-one ten-
minute time series were archived:   
•   wind speed and direction at 10 m, 20 m, 50 m, 100 m, 

200 m above the surface as well as at 500 hPa (higher 
in the atmosphere); 

•   temperature at 0 m, 2 m, 20 m and 50 m above the 
surface; 

•   specific humidity at 2 m above the surface; 
•   pressure at the surface; 
•   precipitation at the surface; 
•   downwelling radiation (longwave and shortwave) at the 

surface.  

D.  Dataset Regridding 
The model run was performed at 2 km × 2 km grid 

spacing across each domain. However, the edges of the 
domains were not perfectly aligned as each domain was 
defined individually. The original datasets were regridded to 
achieve a consistent grid spacing across the entire area 
covered by the WWSIS. The final dataset has a one arc-
minute spacing, which allows easy identification of the grid 
points by latitude and longitude.  

E.  Dataset Blending 
The four single domain simulations needed to be blended 

to produce a single, consistent, dataset for 2004-2006 with a 
temporal resolution of ten minutes and a spatial resolution 
of one arc-minute. In order to produce a seamless dataset, 
data from the individual model domains were blended at the 
overlapping boundaries (see Fig. 1.). The result was a single 
large dataset with over 1.2 million individual grid points. 
Each of these grid points had an associated time series with 
157,680 time steps for each of the parameters listed in 
Section IIIC. Dataset Creation. This dataset, stored in 
netCDF format, used more than 24TB of storage space.  

The sheer size of this dataset caused significant 
problems. To maintain the integrity of the dataset, the 
dataset was copied each time a process was implemented 
that altered the core dataset (e.g. re-gridding, blending, etc.). 
The copy was then altered and the original dataset was 
maintained until the altered duplicate could be thoroughly 
verified. This meant that for much of the time many TB of 
duplicate data were being stored as a safety backup. This 
process was difficult and time consuming, as even the 
process of copying 24TB of data is non-trivial. However, 
the production of the dataset was a major cost of the project 
(both in time and money) and loss of the dataset was not an 
acceptable risk. 

IV.  POST-PROCESSING THE WWSIS DATASET 
The creation of the modeled dataset was the first phase of 

the project, however, the modeled dataset had to be 
converted into synthetic wind energy project data to make 
the data easily accessible for power systems modeling. For 
the purpose of creating these synthetic wind projects, each 
grid point was assumed to be its own potential wind project. 

A.  Site Selection for Synthetic Wind Energy Projects 
Ideally each grid point in the modeled dataset would be 

converted into a synthetic wind energy project. However, 
many locations are not suitable for the location of wind 
energy projects due to other uses, building restrictions and 
an inadequate wind resource. In addition, such an approach 
would have been impractical given the large scope of this 
study. The computational time required to access the data, 
convert from wind speed to effective wind speed (adjusted 
by air density) to wind power for each of the 1.2 million 
points at almost 160,000 time intervals would have been 
large. Furthermore, even if each grid point were only 
assumed to support a single utility-scale turbine the result 
would still be several TW of wind energy, well beyond the 
scope of likely wind energy build-out scenarios. Thus, a 
subset of the potential sites was selected for modeling as 
synthetic wind projects.  

The power systems portion of this integration study 
requires approximately 70 GW of installed wind energy. 
However, to allow evaluation of a large number of different 
build-out scenarios, it was decided that 3TIER would 
provide time series data for over 900 GW of synthetic wind 
energy sites. To determine the number of MWs that each 
site could represent some simple heuristics were used: a 
spacing of ten rotor diameters between strings of wind 
turbines and a spacing of three rotor diameters between 
turbines on the same string.  

To maintain consistency across the dataset, the same 
turbine was used for each synthetic wind project. A large 
turbine was employed because the dataset was designed to 
represent build-outs of wind energy up to 2017 (ten years in 
the future from the commencement of the project) and there 
is a trend towards larger turbines. The Vestas V-90 3MW 
turbine was chosen as a good middle ground between 
today’s mean turbine size and those likely to be used in the 
future.  Using the simple heuristics described above, ten 
turbines could be assigned to each grid point representing a 
total of 30 MW of installed capacity for each site. As a 
result, 30,000 points were required to model the total 
amount of 900 GW. Multiple sites could then be aggregated 
to obtain wind energy projects of a larger size, still modeled 
to allow for varying wind speed across the project. 

The site selection process was carried out in several 
phases. During each phase additional potential project 
locations were added to meet a specified goal. The main 
purpose of the WWSIS was to model the WestConnect 
group of utilities (excluding California). These utilities are 
in Nevada, Arizona, New Mexico, Colorado and Wyoming. 
However, the entire Western Electricity Coordinating 
Council (WECC) area was modelled to allow for 
interactions at the borders of the WestConnect footprint. 
The first phase was to pre-select a set of points to represent 
existing wind energy projects and those under development. 
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This information was obtained and compiled by NREL and 
resulted in 404 sites (or approximately 12 GW).  

The next phase was to identify the sites with the highest 
wind energy potential (based on wind energy density at 
100 m) within 50 miles of existing or planned major 
transmission networks or in pre-identified high potential 
renewable energy zones (REZ) in the study footprint. 
200 GW of sites (6667 sites) were selected in the 
transmission corridors or REZ areas.  

The third selection phase aimed to find the sites that had 
the best correlation with the load profile of the West 
Connect (limited to sites with a wind energy density of 
greater than or equal to 300 W/m2). The load correlation 
measure was evaluated by calculating the difference 
between the average normalised load profile and average 
normalised wind energy density (on an hourly basis) – the 
smaller the difference, the better the site.  It was also 
desirable that the sites were geographically diverse; this was 
achieved by assigning each state (and two offshore regions) 
an approximate number of GW that should be selected. 
These assignations were based upon the “20% Wind Energy 
by 2030” analysis performed by NREL and others [14] and 
also the relative importance of each state to the WWSIS 
study (primarily focusing on the WestConnect region). 
Table II shows the approximate GW modeled in each state. 

  
TABLE II 

DISTRIBUTION OF SITES FOR SELECTION (BY STATE AND OFFSHORE 
REGION) USING LOAD CORRELATION AND POWER DENSITY 

State/Offshore 
Region 

Selected by load 
correlation [GWs] 

Selected by power 
density [GWs] 

Arizona* 18 18 
California 8 74 
Colorado* 28 28.5 
Idaho 8 13.5 
Montana 13 35 
North Dakota 4 5 
Nebraska 8 5 
New Mexico* 32 40.5 
Nevada* 33 48 
Oklahoma 7 7 
Oregon 4 36 
South Dakota 7 10 
Texas 8 10 
Utah 8 11 
Washington 4 44 
Wyoming* 54 69 
Offshore CA 1 4 
Offshore WA/OR 0.5 1 
TOTAL 245.5 459.5 

*In the West Connect study footprint 
 
The fourth selection phase was a simple selection by 

highest wind energy density, again selected according to the 
allocations in Table II. The selected sites are shown in 
Fig. 2. Finally, after the site selection was complete, it 
became apparent that some sites that should have ideally 
been included in the pre-selected set of sites had been 
missed. A further set of “post-selected” sites was identified 
with input from project stakeholders resulting in an 
additional 1499 points.  The final number of points that 
were selected for further study was 32043, each representing 
a single 30 MW generation site. 

 

 
Fig. 2.  A map showing the selected sites with each point coloured 
differently depending on selection technique. 
 

B.  Creation of a Wind Power Time Series at Each of the 
Selected Points 

Numerical weather prediction models have a tendency to 
produce wind speed time series that are excessively smooth, 
that is, they do not produce sufficient wind speed variation 
at short timescales. As a result, wind plant output derived 
directly from wind speeds from a mesoscale model and put 
through a rating curve is excessively smooth. Unfortunately, 
this simple conversion technique is still regarded by most as 
the industry standard. An alternative technique, the 
Statistical Correction to Output from a Record Extension 
(SCORE), was proposed in a paper presented at the IEEE 
Power Engineering Society General Meeting in 2007 [6].  
SCORE has now been used for five different studies, 
modeling several GWs of potential wind energy 
installations. The SCORE process uses observed statistical 
deviations from a mean value to create probability density 
functions of deviation from some central point. SCORE is 
run for each individual turbine and produces a time series of 
data for each turbine. The individual turbine time series are 
then aggregated to represent sub-project groupings or 
summed up to model the entire project output. However, use 
of a probabilistic process to model the output for 32043 × 10 
individual turbines is extremely time consuming. In 
addition, the turbine locations within each 2 km × 2 km grid 
would only be approximate, meaning that the individual 
turbine locations would provide no extra information. To 
solve this problem SCORE-lite was developed.  

SCORE-lite models each grid point, instead of each 
turbine, by aggregating ten individual samples from the 
original SCORE probability density functions (as though ten 
turbines were being modeled) to develop new probability 
density functions that represent ten turbines instead of one. 
The goal of SCORE-lite is to take the “rated” power output, 
calculated by converting wind speed to power output 
through a simple rating curve, and modify it such that the 
overall ramping characteristics more closely approximate 
those observed in reality. SCORE-lite was validated as part 
of this project and found to result in a more realistic number 
of ramps without any appreciable loss of accuracy in 
modeling the diurnal cycle.  
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V.  FORECASTS FOR THE WWSIS DATASET 
A wind energy forecast was required at each synthetic 

wind energy site to adequately model operation of the power 
system with the hypothetical wind plants. Many studies 
have shown that accurate wind energy forecasts can reduce 
the costs of integrating wind energy into a power system 
[9, 15-19]. To adequately assess the costs and impacts of 
wind integration, the wind energy forecast plays a major 
role. Consequently, four forecasts were provided as part of 
the final dataset for this project. These four forecast 
methodologies represent the range of forecasting 
possibilities.  

A.  Persistence Forecast 
A persistence forecast provides the simplest kind of 

forecast, but is only appropriate for short-term forecasting. 
As part of this study, the persistence forecast provided a 
one-hour forecast with a two-hour look-ahead period. This 
time delay was chosen as a representative delay as it 
allowed time for the forecast to be created and inspected, 
while still allowing time for an operator to react before the 
power had to be scheduled on the hourly timescale.  For 
forecasts with a target period further in the future than the 
hour-ahead scale, other techniques must be used. 

B.  Climatological Forecast 
A climatological forecast is also a very basic forecast. It 

is used for day-ahead prediction and is designed to capture 
the average hourly diurnal cycle for the present weather 
regime. The previous thirty-day period is often selected as 
the averaging period. For this project, each month of each 
year had its own climatological trace of 24 one-hour values. 
This actually includes “future” information in the forecast 
and so is not possible in reality. However, the climatological 
forecast is only a baseline forecast. The mesoscale model 
forecast provides more accurate forecasts than the 
climatological forecast. 

C.  Mesoscale Model Forecast 
The mesoscale model forecast represents the state-of-the-

art in day-ahead forecasting. This model forecast represents 
baseline accuracy for mesoscale model forecasting, as it is 
not tuned to any specific project. A mesoscale model 
forecast is run in a very similar method to Section III –
WWSIS Dataset Generation.  

The reason that a mesoscale model could be used to 
create the synthetic data as well as the forecasts is that 
different data were used to provide the boundary conditions 
to drive the mesoscale model. The NWP simulation for 
synthetic data creation was driven using the reanalysis 
dataset described above. The mesoscale modeling forecast 
was driven using a different input dataset, the Global 
Forecast System (GFS) [20], the actual information used to 
perform state-of-the-art forecasting.  

The mesoscale model forecasting was meant to be a 
smaller portion of work than the simulation of synthetic 
wind energy data, so the same granularity of the models 
could not be afforded. Instead, the models were run with a 
6 km × 6 km resolution and at the hourly timescale. This 
meant that the forecast model was coarser than the original 
model. As a result, less computationally expensive and 
could be run as a single large domain. 

True state-of-the-art forecasting is specifically tuned to 
operate optimally at the desired forecast location through the 
use of a MOS correction. Due to the large number of sites 
(over 32,000 sites) such a detailed procedure was 
impractical. The mesoscale forecast is a good measure of 
forecasts obtained from a state-of-the-art model and also 
highlights characteristic errors – but it is not as good as a 
true state-of-the-art forecast. 

D.   “Perfect” Forecast 
The “perfect” forecast is an artificial forecast that cannot 

be produced in reality, but can be used to find the minimum 
wind integration cost. Wind is a variable resource and so 
even if it is forecast perfectly, the resulting variation will 
still require some of the generators on the system to operate 
away from maximum efficiency (or change the generation 
mix). This has a cost, even if it is perfectly predicted. The 
perfect forecast is an hourly resolution forecast that 
perfectly represents the hourly average of the six ten-minute 
values. It is used as an upper bound on forecast accuracy. 
The true state-of-the-art forecast will lie between the 
simplified mesoscale model forecast produced for this 
project and the perfect forecast produced for this project. 

VI.  CONCLUSION 
This paper discusses the strengths and weaknesses of 

existing techniques used to develop data for wind 
integration studies. It also presents a case study using a large 
wind integration study that employs numerical weather 
prediction models. The WWSIS is one of the world’s largest 
regional wind integration studies to date.  The final dataset 
covers over 4 million square kilometers, with a spatial 
resolution of 1 arc-minute and a temporal resolution of ten-
minutes. From this dataset over 32,000 sites were selected 
for further post-processing – each modeled as an individual 
wind project of 30 MW, resulting in well over 900 GW of 
synthetic wind energy simulations. 

The paper has focused on the process and decisions that 
formed the basis for the creation of this dataset that will be 
used for the integration study. The process has been 
presented with limited consideration of the power systems 
engineering aspects so that the problems addressed in this 
paper should be as widely applicable to different integration 
studies.  
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